VI. Index▲
Navigation métrique (1) |
|
Carte métrique (1) |
Navigation par carte (1) |
Carte topologique (1) |
Navigation réactive (1) |
Cartographie (1), (2)Cartographie |
Navigation topologique (1) |
Distance de Mahalanobis (1) |
Perception/Décision/Action (1), (2), (3)Architectures de contrôle |
FastSLAM (1) |
Perceptions (1) |
Filtre de Kalman (1), (2)Cartographie par filtrage de Kalman étendu |
|
Filtre de Kalman étendu (1) |
Planification (1), (2), (3)Planification |
Filtre particulaire (1), (2)Filtrage particulaire, (3) |
Politique (1), (2), (3)Calcul de politique |
Histogram Filter (1) |
Q-Learning (1) |
Rao-Blackwellisation (1) |
|
Informations proprioceptives (1) |
|
Localisation (1), (2)Localisation |
Snapshot Model (1) |
MDP (1) |
Stratégies de navigation (1)Stratégies de navigation |
Variabilité perceptuelle (1) |
VII. Bibliographie▲
[1] A. Angeli, D. Filliat, S. Doncieux, and J.-A. Meyer. A fast and incremental method for loopclosure detection using bags of visual words. IEEE Transactions On Robotics, Special Issue on Visual SLAM, 2008.
[2] A. Angeli, D. Filliat, S. Doncieux, and J.-A. Meyer. Visual topological slam and global localization. In Proceedings of the International Conference on Robotics and Automation (ICRA), 2009.
[3] R. Arkin. Towards the unification of navigational planning and reactive control. In Proceedings of the AAAI Spring Symposium on Robot Navigation, pages 1–5, 1989.
[4] Ronald Arkin. Behavior-Based Robotics. The MIP Press, 1998.
[5] A. Arleo, J. del R. Millán, and D. Floreano. Efficient learning of variable-resolution cognitive maps for autonomous indoor navigation. In IEEE Transactions on Robotics and Automation, volume 15, pages 990–1000, 1999.
[6] A. Arleo and W. Gerstner. Spatial cognition and neuro-mimetic navigation : A model of hippocampal place cell activity. Biological Cybernetics, Special Issue on Navigation in Biological and Artificial Systems, 83 :287–299, 2000.
[7] A. Arsenio and M. I. Ribeiro. Absolute localization of mobile robots using natural landmarks. In Proceedings of the International Conference on Electronics, Circuits and Systems, 1998.
[8] N. Ayache and O. Faugeras. Maintaning representations of the environment of a mobile robot. IEEE Transactions on Robotics and Automation, 5(6) :804 – 819, 1989.
[9] I. A. Bachelder and A. M. Waxman. Mobile robot visual mapping and localization : A viewbased neurocomputational architecture that emulates hippocampal place learning. Neural Networks, 7(6/7) :1083–1099, 1994.
[10] I. A. Bachelder and A. M. Waxman. A view-based neurocomputational system for relational map-making and navigation in visual environments. Robotics and Autonomous Systems, 16 :267–298, 1995.
[11] J. E. Baker. Reducing bias and inefficiency in the selection algorithm. In Proceedings of the Second International Conference on Genetic Algorithms, pages 14–21. Lawrence Erlbaum Associates (Hillsdale), 1987.
[12] K. Balakrishnan, O. Bousquet, and V. Honavar. Spatial learning and localization in rodents : A computation model of the hippocampus and its implications for mobile robots. Adaptive Behavior, 7(2) :173–216, 1999.
[13] S. Bazeille and D. Filliat. Incremental topo-metric slam using vision and robot odometry. In Proceedings of the International Conference on Robotics and Automation (ICRA), 2011.
[14] M. Betke and K. Gurvits. Mobile robot localization using landmarks. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA-94), volume 2, pages 135–142, 1994.
[15] G. Blanc, Y. Mezouar, and P. Martinet. Indoor navigation of a wheeled mobile robot along visual routes. In Proceedings of the IEEE International Conference on Robotics and Automation, 2005.
[16] D. Boley, E. Steinmetz, and K. Sutherland. Robot localization from landmarks using recursive total least squares. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA-96), volume 4, pages 1381–1386, 1996.
[17] J. Borenstein and Y. Koren. The vector field histogram - fast obstacle avoidance for mobile robots. IEEE Journal of Robotics and Automation, 7 :278–288, 1991.
[18] G. Borghi and D. Brugali. Autonomous map learning for a multi-sensor mobile robot using diktiometric representation and negotiation mechanism. In Proceedings of the International Conference on Advanced Robotics (ICAR-95), 1995.
[19] Valentino Braitenberg. Vehicles : Experiments in Synthetic Psychology. The MIT Press, 1986.
[20] R. A. Brooks. Intelligence without representation. Artificial Intelligence, 1(47) :139–159, 1991.
[21] Rodney A. Brooks. How to Build Complete Creatures Rather than Isolated Cognitive Simulators. In Architectures for Intelligence, pages 225–239, 1991.
[22] J. Buhmann, W. Burgard, A. B. Cremers, D. Fox, T. Hofmann, F. Schneider, J. Strikos, and S. Thrun. The mobile robot rhino. AI Magazine, 16(1), 1995.
[23] W. Burgard, A. B. Cremers, D. Fox, D. Hähnel, G. Lakemeyer, D. Schulz, W. Steiner, and S. Thrun. The interactive museum tour-guide robot. In Proceedings of the Fifteenth National Conference on Artificial Intelligence (AAAI-98). The MIT Press, 1998.
[24] W. Burgard, D. Fox, D. Hennig, and T. Schmidt. Estimating the absolute position of a mobile robot using position probability grids. In Proceedings of the Thirteenth National Conference on Artificial Intelligence (AAAI-96), pages 896–901, 1996.
[25] N. Burgess, M. Recce, and J. O’Keefe. A model of hippocampal function. Neural Networks, 7 :1065–1081, 1994.
[26] B. A. Cartwright and T. S. Collett. Landmark maps for honeybees. Biol. Cybern., 57 :85–93, 1987.
[27] A. R. Cassandra, L. P. Kaelbling, and J. A. Kurien. Acting under uncertainty : Discrete bayesian models for mobile-robot navigation. In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, 1996.
[28] J. A. Castellanos, J. M. M. Montiel, J. Neira, , and J. D. Tardos. The SPmap : A probabilistic framework for simultaneous localization and map building. IEEE Transactions on Robotics and Automation, 15(5) :948–953, 1999.
[29] R. Chatila and J. Laumond. Position referencing and consistent world modelling for mobile robots. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA-85), pages 138–170, 1985.
[30] F. Chaumette. La commande des robots manipulateurs, chapter Asservissement visuel. Traité IC2, Hermès, 2002.
[31] I. J. Cox. Blanche - an experiment in guidance and navigation of an autonomous robot vehicle. IEEE Transactions on Robotics and Automation, 7(2) :193–204, 1991.
[32] A. Dalgalarrondo, D. Dufourd, and D. Filliat. Controlling the autonomy of a reconnaissance robot. In SPIE Defense and Security 2004 Symposium. Unmanned Ground Vehicle Technology VI Conference, 2004.
[33] G. Dedeoglu, M. Mataric, and G. S. Sukhatme. Incremental, online topological map building with a mobile robot. In Proceedings of Mobile Robots XIV - SPIE, pages 129–139, 1999.
[34] A. Diosi, S. Segvic, A. Remazeilles, and F. Chaumette. Experimental evaluation of autonomous driving based on visual memory and image based visual servoing. IEEE Trans. on Intelligent Transportation Systems, 2011.
[35] T. Duckett, S. Marsland, and J. Shapiro. Learning globally consistent maps by relaxation. In Proceedings of the International Conference on Robotics and Automation (ICRA’2000), pages 3841 – 3846, 2000.
[36] T. Duckett and U. Nehmzow. Experiments in evidence based localisation for a mobile robot. In D. Corne and J. L. Shapiro, editors, Proceedings of the AISB 97 workshop on Spatial Reasoning in Animals and Robots. Springer, 1997.
[37] T. Duckett and U. Nehmzow. Mobile robot self-localization and measurement of performance in middle scale environments. Robotics and Autonomous Systems, 1-2(24), 1998.
[38] G. Dudek and M. Jenkin. Computational Principles of Mobile Robotics. Cambridge University Press, 2000.
[39] G. Dudek and P. MacKenzie. Model-based map construction for robot localization. In Proceedings of Vision Interface 1993, 1993.
[40] S. Egerton and V. Callaghan. From mammals to machines : Towards a biologically inspired mapping model for autonomous mobile robots. In Procceding of the 6th International Conference on Intelligent Autonomous Systems (IAS-6), 2000.
[41] T. Einsele. Real-time self-localization in unknown indoor environments using a panorama laser range finder. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS-97), pages 697–703, 1997.
[42] S. P. Engelson. Continuous map learning for mobile robots. Extended Abstract for the 3rd French-Israeli Symposium on Robotics, 1995.
[43] S. P. Engelson and D. V. McDermott. Error correction in mobile robot map learning. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA-92), 1992.
[44] H. Feder, J. Leonard, and C. Smith. Adaptive mobile robot navigation and mapping. International Journal of Robotics Research, 18(7) :650–668, 1999.
[45] D. Filliat and J.-A. Meyer. Map-based navigation in mobile robots - i. a review of localisation strategies. Journal of Cognitive Systems Research, submitted for publication, 2001.
[46] D. Fox, W. Burgard, F. Dellaert, and S. Thrun. Monte carlo localization : Efficient position estimation for mobile robots. In Proceedings of the Sixteenth National Conference on Artificial Intelligence (AAAI-99). AAAI, 1999.
[47] D. Fox, W. Burgard, and S. Thrun. The dynamic window approach to collision avoidance. IEEE Robotics and Automation Magazine, 4(1), 1997.
[48] D. Fox, W. Burgard, and S. Thrun. Markov localization for mobile robots in dynamic environments. Journalof Artificial Intelligence Research, 11, 1999.
[49] D. Fox, W. Burgard, S. Thrun, and A. B. Cremers. Position estimation for mobile robots in dynamic environments. In Proceedings of the Fifteenth National Conference on Articial Intelligence (AAAI-98), pages 983–988, 1998.
[50] Dieter Fox. Kld-sampling : Adaptive particle filters and mobile robot localization. In In Advances in Neural Information Processing Systems (NIPS, 2001.
[51] M. Franz, B. Scholkopf, P. Georg, H. Mallot, and H. Bulthoff. Learning view graphs for robot navigation. Autonomous Robots, 5 :111–125, 1998.
[52] A. Garulli, A. Giannitrapani, A. Rossi, and A. Vicino. Mobile robot slam for line-based environment representation. In Decision and Control, 2005 and 2005 European Control Conference. CDC-ECC’05. 44th IEEE Conference on, pages 2041–2046. IEEE, 2005.
[53] J. Gasós and A. Martín. Mobile robot localization using fuzzy maps. In T. Martin and A. Ralescu, editors, Fuzzy Logic in AI - Selected papers from the IJCAI ’95 Workshop, number 1188, pages 207–224. Springer-Verlag, 1997.
[54] P. Gaussier, C. Joulain, J.P. Banquet, S. Lepretre, and A. Revel. The visual homing problem : an example of robotics/biology cross-fertilisation. Robotics and autonomous systems, 30(1-2) :155–180, 2000.
[55] P. Gaussier, S. Leprêtre, C. Joulain, A. Revel, M. Quoy, and Banquet J. P. Animal and robot learning : experiments and models about visual navigation. In Proceedings of the Seventh European Workshop on Learning Robots, 1998.
[56] A. P. Georgopoulos, A. B. Schwartz, and R. E. Kettner. Neuronal population coding of movement direction. Science, (233) :1416–1419, 1986.
[57] J. Gomes-Mota and M. I. Ribeiro. Mobile robot localisation on reconstructed 3d models. Robotics and Autonomous Systems, 31(1-2) :17–30, 2000.
[58] S. Gourichon and J.-A. Meyer. Using colored snapshots for short-range guidance in mobile robots. International Journal of Robotics and Automation, submitted for publication, Special Issue on Biologically Inspired Robots, 2001.
[59] R. Greiner and R. Isukapalli. Learning to select useful landmarks. IEEE Transactions on Systems, Man, and Cybernetics-Part B,Special Issue on Learning Autonomous Robots, 26(3), 1996.
[60] G. Grisetti, C. Stachniss, and W. Burgard. Improving Grid-based SLAM with RaoBlackwellized Particle Filters by Adaptive Proposals and Selective Resampling. In Robotics and Automation, 2005. ICRA 2005. Proceedings of the 2005 IEEE International Conference on, pages 2432–2437, 2005.
[61] Giorgio Grisetti, Cyrill Stachniss, and Wolfram Burgard. Nonlinear constraint network optimization for efficient map learning. Trans. Intell. Transport. Sys., 10 :428–439, September 2009.
[62] L. J. Guibas, R. Motwani, and P. Raghavan. The robot localization problem. Algorithmic Foundations of Robotics, pages 269–282, 1995.
[63] J. Gutmann and K. Konolige. Incremental mapping of large cyclic environments. In Proceedingsof the IEEE International Symposium on Computational Intelligence in Robotics and Automation (CIRA-2000), 2000.
[64] J. Gutmann and Kurt Konolige. Incremental mapping of large cyclic environments. In Proc. IEEE International Symposium on Computational Intelligence in Robotics and Automation (CIRA), page 318–325, Monterey, California, 1999.
[65] J. S. Gutmann and C. Schlegel. Amos : Comparison of scan matching approaches for self-localization in indoor environments,. In Proceedings of the 1st Euromicro Workshop on Advanced Mobile Robots. IEEE Computer Society Press, 1996.
[66] V. V. Hafner. Learning places in newly explored environments. In J. A. Meyer, A. Berthoz, D. Floreano, H. L. Roiblat, and S. W. Wilson, editors, Sixth International Conference on simulation of adaptive behavior : From Animals to Animats (SAB-2000). Proceedings Supplement., pages 111–120. ISAB, 2000.
[67] R. I. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision. Cambridge University Press, ISBN : 0521540518, second edition, 2004.
[68] P. Hébert, S. Betgé-Brezetz, and R. Chatila. Decoupling odometry and exteroceptive perception in building a global world map of a mobile robot : The use of local maps. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA-1996), pages 757–764, 1996.
[69] J. Hertzberg and F. Kirchner. Landmark-based autonomous navigation in sewerage pipes. In Proceedings of the First Euromicro Workshop on Advanced Mobile Robots. IEEE Computer Society Press, 1996.
[70] D. Hähnel, D. Fox, W. Burgard, and S. Thrun. A highly efficient fastslam algorithm for generating cyclic maps of large-scale environments from raw laser range measurements. In Proceedings of the Conference on Intelligent Robots and Systems (IROS), 2003.
[71] Daniel Ichbiah. Robots, Génèse d’un peuple artificiel. Minerva, 2005.
[72] I. Jebari, S. Bazeille, E. Battesti, H. Tekaya, M. Klein, A. Tapus, D. Filliat, C. Meyer, S. Ieng, R. Benosman, E. Cizeron, J.-C. Mamanna, and B. Pothier. Multi-sensor semantic mapping and exploration of indoor environments. In Proceedings of the 3rd International Conference on Technologies for Practical Robot Applications (TePRA), 2011.
[73] P. Jensfelt and S. Kristensen. Active global localisation for a mobile robot using multiple hypothesis tracking. In Proceedings of the IJCAI-99 Workshop on Reasoning with Uncertainty in Robot Navigation, 1999.
[74] S. Julier and J. Uhlmann. A new extension of the Kalman filter to nonlinear systems. In Int. Symp. Aerospace/Defense Sensing, Simul. and Controls, Orlando, FL, 1997.
[75] O. Karch and T. Wahl. Relocalization – theory and practice. Discrete Applied Mathematics : Special Issue on Computational Geometry, 93, 1999.
[76] Hee-Young Kim, Sung-On Lee, and Bum-Jae You. Robust laser scan matching in dynamic environments. In Proceedings of the 2009 international conference on Robotics and biomimetics, ROBIO’09, pages 2284–2289. IEEE Press, 2009.
[77] D. Kirsh. Today the earwig, tomorrow man ? Artificial Intelligence, 47 :161–184, 1991.
[78] Y. Koren and J. Borenstein. Histogramic in-motion mapping for mobile robot obstacle avoidance. IEEE Transaction on Robotics and Automation, 7(4) :535–539, 1991.
[79] D. Kortenkamp, M. Huber, F. Koss, W. Belding, J. Lee, A. Wu, C. Bidlack, and S. Rogers. Mobile robot exploration and navigation of indoor spaces using sonar and vision. In Proceedings of the AIAA/NASA Conference on Intelligent Robots in Field, Factory, Service, and Space (CIRFFSS 94), pages 509–519, 1994.
[80] D. Kortenkamp and T. Weymouth. Topological mapping for mobile robots using a combination of sonar and vision sensing. In Proceedings of the Twelfth National Conference on Artificial Intelligence (AAAI-94), pages 979–984, Seattle, WA, 1994.
[81] B. J. Kuipers. The spatial semantic hierarchy. Artificial Intelligence, (119) :191–233, 2000.
[82] B. J. Kuipers and Y. T. Byun. A robot exploration and mapping strategy based on a semantic hierarchy of spatial representations. Robotics and Autonomous Systems, 8 :47–63, 1991.
[83] C. Kunz, T. Willeke, and I. Nourbakhsh. Automatic mapping of dynamic office environments. In In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA-97), volume 2, pages 1681–1687, 1997.
[84] A. Kurz. Alef : An autonomous vehicle which learns basic skills and construct maps for navigation. Robotics and Autonomous Systems, 14 :172–183, 1995.
[85] C. Kwok, D. Fox, and M. Meila. Adaptive real-time particle filters for robot localization. In Proc. of the IEEE International Conference on Robotics & Automation, 2003.
[86] D. Lambrinos, R. Möller, T. Labhart, R. Pfeifer, and R. Wehner. A mobile robot employing insect strategies for navigation. Robotics and Autonomous Systems, special issue : Biomimetic Robots, 30 :39–64, 2000.
[87] J.-C. Latombe. Robot Motion Planning. Boston : Kluwer Academic Publishers, Boston, 1991.
[88] J.-P. Laumond. Robot Motion Planning and Control. Lectures Notes in Control and Information Sciences 229. Springer, 1998.
[89] Steven M. Lavalle. Rapidly-exploring random trees : A new tool for path planning. Technical report, 1998.
[90] Steven M. LaValle. Planning Algorithms. Cambridge University Press, May 2006.
[91] J. J. Leonard and H. F. Durrant-Whyte. Simultaneous map building and localization for an autonomous mobile robot. pages 1442–1447, 1991.
[92] J. J. Leonard, H. F. Durrant-Whyte, and I. J. Cox. Dynamic map building for an autonomous mobile robot. International Journal of Robotics Research, 11(4) :89–96, 1992.
[93] T. S. Levitt and D. T. Lawton. Qualitative navigation for mobile robots. Artificial Intelligence, 44 :305–360, 1990.
[94] F. Lu and E. Milios. Globally consistent range scan alignment for environment mapping. Autonomous Robots, 4 :333–349, 1997.
[95] F. Lu and E. Milios. Globally consistent range scan alignment for environment mapping. Auton. Robots, 4 :333–349, October 1997.
[96] C. Madsen, C. Andersen, and J. rensen. A robustness analysis of triangulation-based robot self-positioning. In Proceedings of the 5th Symposium for Intelligent Robotics Systems, 1997.
[97] O. Martínez Mozos, R. Triebel, P. Jensfelt, A. Rottmann, and W. Burgard. Supervised semantic labeling of places using information extracted from sensor data. Robotics and Autonomous Systems, 55(5) :391–402, May 2007.
[98] M. J. Mataric. Integration of representation into goal-driven behaviour-based robots. IEEE Transactions on Robotics and Automation, 8(3) :304–312, 1992.
[99] P. S. Maybeck. Stochastic Models, Estimation and Control. Academic Press, 1979.
[100] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit. FastSLAM : A factored solution to the simultaneous localization and mapping problem. In Proceedings of the AAAI National Conference on Artificial Intelligence, Edmonton, Canada, 2002. AAAI.
[101] H. Moravec and A. Elfes. High resolution maps from wide angular sensors. In Proceedings of the IEEE International Conference On Robotics and Automation (ICRA-85), pages 116–121, St. Louis, 1985. IEEE Computer Society Press.
[102] Hans Moravec. ROBOT : mere machine to transcendent mind. Oxford University Press, 1995.
[103] P. Moutarlier and R. Chatila. An experimental system for incremental environment modeling by an autonomous mobile robot. In Experimental Robotics 1, pages 327–346. SpringerVerlag, 1990.
[104] R. R. Murphy. Introduction to AI Robotics. The MIT Press, 2000.
[105] U. Nehmzow and C. Owen. Robot navigation in the real world : Experiments with manchester’s fortytwo in unmodified, large environments,. Robotics and Autonomous Systems, 33(4) :223–242, 2000.
[106] I. Nourbakhsh, R. Powers, and S. Birchfield. Dervish, an office navigating robot. AI Magazine, 16(2) :53–60, 1995.
[107] C. F. Olson. Probabilistic self-localization for mobile robots. IEEE Transactions on Robotics and Automation, 16(1), 2000.
[108] S. Oore, G. Hinton, and G. Dudek. A mobile robot that learns its place. Neural Computation, 9 :683–699, 1997.
[109] D. Gálvez-López P. Piniés, L. M. Paz and J.D. Tardós. Ci-graph slam for 3d reconstruction of large and complex environments using a multicamera system. International Journal of Field Robotics, September/October 2010.
[110] M. Piasecki. Global localization for mobile robots by multiple hypothesis tracking. Robotics and Autonomous Systems, 16 :93–104, 1995.
[111] T. J. Prescott. Spatial representation for navigation in animats. Adaptive Behavior, 4(2), 1995.
[112] Andrzej Pronobis. Semantic Mapping with Mobile Robots. PhD thesis, Royal Institute of Technology (KTH), Stockholm, Sweden, June 2011.
[113] D. Radhakrishnan and I. Nourbakhsh. Topological localization by training a vision-based transition detector. In Proceedings of the 1999 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS-99), 1999.
[114] A. Remazeilles and F. Chaumette. Image-based robot navigation from an image memory. Robotics and Autonomous Systems, 55(4), 2007.
[115] Nicholas Roy and Sebastian Thrun. Coastal navigation with mobile robots. In In Advances in Neural Processing Systems 12, pages 1043–1049, 1999.
[116] Thomas Röfer. Building consistent laser scan maps. In In Proc. of the 4th European Workshop on Advanced Mobile Robots (Eurobot 2001), volume 86 of Lund University Cognitive Studies, pages 83 ? 90, pages 83–90, 2001.
[117] A. Saffiotti and L. P. Wesley. Perception-based self-localization using fuzzy locations. In Reasoning with Uncertainty in Robotics, volume 1093 of Lecture Notes in Computer Science. Springer-Verlag, 1995.
[118] S. Schaal, C. G. Atkeson, and S. Vijayakumar. Real-time robot learning with locally weighted statistical learning. In International conference on robotics and automation (icra2000), 2000.
[119] B. Schiele and J. Crowley. A comparison of position estimation techniques using occupancy grids. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA-94), pages 1628–1634, 1994.
[120] B. Scholkopf and H. A. Mallot. View-based cognitive mapping and path planning. Adaptive Behavior, 3(3) :311–348, 1995.
[121] M. J. Schoppers. Universal plans for reactive robots in unpredictable environments. In Proceedings of the 10th International Joint Conference on Artificial Intelligence (IJCAI 87), pages 1039–1046, Milan, Italy, 1987.
[122] A. C. Schultz and W. Adams. Continuous localization using evidence grids. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA-98), pages 2833–2839, 1998.
[123] S. Segvic, A. Remazeilles, A. Diosi, and F. Chaumette. A mapping and localization framework for scalable appearance-based navigation. Computer Vision and Image Understanding, 113(2) :172–187, February 2009.
[124] P. E. Sharp. Computer simulation of hippocampal place cells. Psychobiology, 19(2) :103–115, 1991.
[125] H. Shatkay and L. P. Kaelbling. Learning topological maps with weak local odometric information. In Proceedings of the Fifteenth International Joint Conference on Artificial Intelligence, 1997.
[126] R. Sim and G. Dudek. Learning visual landmarks for pose estimation. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA-1999), 1999.
[127] R. Simmons and S. Koenig. Probabilistic navigation in partially observable environments. In S. Mellish, editor, Proccedings of IJCAI’95, Montreal,Canada, 1995. Morgan Kaufman Publishing.
[128] Danijel Skocaj, Horst Bischof, and Ales Leonardis. A robust pca algorithm for building representations from panoramic images. In Proceedings of the 7th European Conference on Computer Vision-Part IV, ECCV ’02, pages 761–775, London, UK, UK, 2002. SpringerVerlag.
[129] R. Smith, M. Self, and P. Cheeseman. Estimating uncertain spatial relationships in robotics. In J. F. Lemmer and L. N. Kanal, editors, Uncertainty in Artificial Intelligence, pages 435–461. Elsevier, 1988.
[130] G. Theocharous, K. Rohanimanesh, and S. Mahadevan. Learning hierarchical partially observable markov decision processes for robot navigation. In Proceedings of the IEEE Conference on Robotics and Automation, 2001.
[131] S. Thrun. Learning metric-topological maps for indoor mobile robot navigation. Artificial Intelligence, 99(1) :21–71, 1999.
[132] S. Thrun. Probabilistic algorithms in robotics. AI Magazine, 21(4) :93–109, 2000.
[133] S. Thrun, M. Bennewitz, W. Burgard, A. B. Cremers, F. Dellaert, D. Fox, D. Haehnel, C. Rosenberg, N. Roy, J. Schulte, and D. Schulz. Minerva : A second generation mobile tourguide robot. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA-1999), 1999.
[134] S. Thrun, W. Burgard, and D. Fox. A real-time algorithm for mobile robot mapping with applications to multi-robot and 3d mapping. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA-2000), 2000.
[135] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic Robotics (Intelligent Robotics and Autonomous Agents series). Intelligent robotics and autonomous agents. The MIT Press, 2005.
[136] Nicola Tomatis, Illah R. Nourbakhsh, and Roland Siegwart. Hybrid simultaneous localization and map building : a natural integration of topological and metric. Robotics and Autonomous Systems, 44(1) :3–14, 2003.
[137] D. S. Touretzky, H. S. Wan, and A. D. Redish. Neural representations of space in rats and robots. In J. M. Zurada, R. J. Marks, and C. J. Robinson, editors, Computational Intelligence : Imitating Life, pages 57–68. IEEE Press, 1994.
[138] O. Trullier and J. A. Meyer. Biomimetic navigation models and strategies in animats. AI Communications, 10 :79–92, 1997.
[139] O. Trullier and J. A. Meyer. Animat navigation using a cognitive graph. Biological Cybernetics, 83(3) :271–285, 2000.
[140] O. Trullier, S. Wiener, A. Berthoz, and J. A. Meyer. Biologically-based artificial navigation systems : Review and prospects. Progress in Neurobiology, 51 :483–544, 1997.
[141] I. Ulrich and I. Nourbakhsh. Appearance-based place recognition for topological localization. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA-2000), 2000.
[142] G. Von Wichert. Mobile robot localization using a self-organised visual environment representation. Robotics and Autonomous Systems, 25 :185–194, 1998.
[143] Chieh-Chih Wang, Charles Thorpe, Sebastian Thrun, Martial Hebert, and Hugh DurrantWhyte. Simultaneous localization, mapping and moving object tracking. The International Journal of Robotics Research, 26(9) :889–916, September 2007.
[144] O. Wijk and H. I. Christensen. Localization and navigation of a mobile robot using natural point landmarks extracted from sonar data. Robotics and Autonomous Systems, 31(1-2) :31–42, 2000.
[145] B. Yamauchi and R. Beer. Spatial learning for navigation in dynamic environments. IEEE Transactions on Systems, Man, and Cybernetics-Part B,Special Issue on Learning Autonomous Robots, 26(3) :496–505, 1996.
[146] B. Yamauchi and P. Langley. Place recognition in dynamic environments. Journal of Robotic Systems, Special Issue on Mobile Robots, 14(2) :107–120, 1997.
[147] B. Yamauchi, A. Schultz, and W. Adams. Integrating exploration and localization for mobile robots. Adaptive Behavior, 7(2) :217–230, 1999.